

Safety Data Sheet

Copyright, 2017, Meguiar's, Inc. All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing Meguiar's, Inc. products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from Meguiar's, Inc., and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

Document Group: 29-9121-4 **Version Number:** 1.02

Revision Date: 19/06/2017 **Supercedes Date:** 10/11/2016

This Safety Data Sheet has been prepared in accordance with the REACH Regulation (1907/2006) and its modifications

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

G77, Gold Class Spray Wax (22-66A): G7716

1.2. Relevant identified uses of the substance or mixture and uses advised against

Identified uses

Automotive

1.3. Details of the supplier of the safety data sheet

ADDRESS: GR_GCSL - Local CUNO Address
Telephone: GR_GCSL - Local Meguiar's Telephone
E Mail: GR_GCSL - Local Meguiar's Email
Website: GR_GCSL - Local Meguiar's Website

1.4. Emergency telephone number

GR_GCSL - Local Meguiar's Emergency Telephone

SECTION 2: Hazard identification

2.1. Classification of the substance or mixture CLP REGULATION (EC) No 1272/2008

CLASSIFICATION:

This material is not classified as hazardous according to Regulation (EC) No. 1272/2008, as amended, on classification, labelling, and packaging of substances and mixtures.

2.2. Label elements CLP REGULATION (EC) No 1272/2008 Not applicable

SUPPLEMENTAL INFORMATION

Supplemental Hazard Statements:

EUH208

Contains 3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-isothiazolone. May produce an allergic reaction.

G77, Gold Class Spray Wax (22-66A): G	7716				
Information required per Regulation	(EU) No 528	3/2012 on Bio	cidal Products	:	
Contains a biocidal product: Contains C					
2.3. Other hazards					
None known					
CT CTT ON A	"				
SECTION 3: Composition	/informa	tion on in	<u>igredients</u>		
Ingredient	C.A.S. No.	EC No.	REACH Registration	% by Wt	Classification

Ingredient	C.A.S. No.	EC No.	REACH Registration No.	% by Wt	Classification
NON-HAZARDOUS INGREDIENTS	Mixture			79 - 99	Substance not classified as hazardous
CONDITIONERS	None			< 5	Substance not classified as hazardous
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-isothiazolone.	55965-84-9			< 0.001	**Acute Tox. 3**, H331; **Acute Tox. 3**, H311; **Acute Tox. 3**, H301; **Skin Corr. 1B**, H314; **Skin Sens. 1A**, H317; **Aquatic Acute 1**,

		H400,M=1; **Aquatic
		Chronic 1**, H410,M=1

Please see section 16 for the full text of any H statements referred to in this section

For information on ingredient occupational exposure limits or PBT or vPvB status, see sections 8 and 12 of this SDS

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation:

No need for first aid is anticipated.

Skin Contact:

Wash with soap and water. If signs/symptoms develop, get medical attention.

Eve Contact:

Flush with large amounts of water. Remove contact lenses if easy to do. Continue rinsing. If signs/symptoms persist, get medical attention.

If Swallowed:

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

See Section 11.1. Information on toxicological effects.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Extinguishing media

Material will not burn. Use a fire fighting agent suitable for the surrounding fire.

5.2. Special hazards arising from the substance or mixture

None inherent in this product.

Hazardous Decomposition or By-Products

Substance
Carbon monoxide
Carbon dioxide

Condition

During Combustion
During Combustion

5.3. Advice for fire-fighters

No special protective actions for fire-fighters are anticipated.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Ventilate the area with fresh air. Observe precautions from other sections.

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

Contain spill. Working from around the edges of the spill inward, cover with bentonite, vermiculite, or commercially available inorganic absorbent material. Mix in sufficient absorbent until it appears dry. Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue with water. Seal the container. Dispose of collected material as soon as possible.

6.4. Reference to other sections

Refer to Section 8 and Section 13 for more information

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Avoid contact with oxidizing agents (eg. chlorine, chromic acid etc.)

7.2. Conditions for safe storage including any incompatibilities

Store away from acids. Store away from oxidizing agents.

7.3. Specific end use(s)

See information in Section 7.1 and 7.2 for handling and storage recommendations. See Section 8 for exposure controls and personal protection recommendations.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational exposure limits

No occupational exposure limit values exist for any of the components listed in Section 3 of this SDS.

8.2. Exposure controls

8.2.1. Engineering controls

No engineering controls required.

G//, Gold Class Spray Wax (22-66A): G//16	
8.2.2. Personal protective equipment (PPE)	
Eye/face protection	
Select and use eye/face protection to prevent contact by protection(s) are recommended: Safety Glasses with side shields	pased on the results of an exposure assessment. The following eye/face
Skin/hand protection No protective gloves required.	
Respiratory protection	
Under normal use conditions, airborne exposures are	not expected to be significant enough to require respiratory protection.
SECTION 9: Physical and chemical	Inconecties
9.1. Information on basic physical and chemical pr Physical state	operties Liquid
Appearance/Odor Odor threshold	Fruity odor clear liquid. No Data Available

pH 6.85 - 7.35 Boiling point/boiling range 100 °C

Melting point No Data Available Flammability (solid, gas) Not Applicable **Explosive properties:** Not Classified Oxidising properties: Not Classified **Flash Point** No flash point **Autoignition temperature** No Data Available No Data Available Flammable Limits(LEL) Flammable Limits(UEL) No Data Available **Vapor Pressure** No Data Available **Relative Density** 1 [Ref Std:WATER=1]

Water solubility Complete

Solubility- non-water No Data Available

Partition coefficient: n-octanol/ waterNo Data AvailableEvaporation rateNo Data AvailableVapor DensityNo Data Available

Decomposition temperatureNo Data Available **Viscosity**No Data Available

Density 1 g/ml

9.2. Other information

Molecular weight No Data Available

SECTION 10: Stability and reactivity

10.1. Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section.

10.2. Chemical stability

Stable.

10.3. Possibility of hazardous reactions

Hazardous polymerization will not occur.

10.4. Conditions to avoid

None known.

10.5. Incompatible materials

Strong oxidizing agents Strong acids

G77, Gold Class Spray Wax (22-66A)

10.6. Hazardous decomposition products

Substance

Condition

None known.

Refer to section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 11 are based on UN GHS calculation rules and classifications derived from 3M assessments.

11.1. Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation:

No known health effects.

Skin Contact:

Contact with the skin during product use is not expected to result in significant irritation.

Eye Contact:

Contact with the eyes during product use is not expected to result in significant irritation.

Ingestion:

No known health effects.

G77, Gold	Class Spray	Wax	(22-66A):	G7716
-----------	-------------	-----	-----------	-------

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Acute Toxicity			
Name	Route	Species	Value
Overall product	Ingestion		No data available; calculated ATE >5,000 mg/kg
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-isothiazolone.	Dermal	Rabbit	LD50 87 mg/kg
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-isothiazolone.	Inhalation- Dust/Mist (4 hours)	Rat	LC50 0.33 mg/l
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-isothiazolone.	Ingestion	Rat	LD50 40 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-isothiazolone.	Rabbit	Corrosive

Serious Eye Damage/Irritation

Name	Species	Value
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-isothiazolone.	Rabbit	Corrosive

Skin Sensitization

Name	Species	Value
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-isothiazolone.	Human and animal	Sensitizing

Photosensitization

Name	Species	Value
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-	Human	Not sensitizing
isothiazolone.	and	
	animal	

Respiratory Sensitization

For the component/components, either no data are currently available or the data are not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-	In vivo	Not mutagenic
isothiazolone.		
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-	In Vitro	Some positive data exist, but the data are not
isothiazolone.		sufficient for classification

Carcinogenicity

Name	Route	Species	Value
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-	Dermal	Mouse	Not carcinogenic
3(2H)-isothiazolone.			
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-	Ingestion	Rat	Not carcinogenic
3(2H)-isothiazolone.			_

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test Result	Exposure Duration
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-isothiazolone.	Ingestion	Not classified for female reproduction	Rat	NOAEL 10 mg/kg/day	2 generation
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-isothiazolone.	Ingestion	Not classified for male reproduction	Rat	NOAEL 10 mg/kg/day	2 generation
3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-isothiazolone.	Ingestion	Not classified for development	Rat	NOAEL 15 mg/kg/day	during organogenesis

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Specific Turget Organ		ingic emposure				
Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
3(2H)-Isothiazolone, 5- chloro-2-methyl-, mixt. with 2-methyl-3(2H)- isothiazolone.	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL Not available	

Specific Target Organ Toxicity - repeated exposure

For the component/components, either no data are currently available or the data are not sufficient for classification.

Aspiration Hazard

For the component/components, either no data are currently available or the data are not sufficient for classification.

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

G77, Gold	Class Spray	Wax	(22-66A):	G7716
-----------	-------------	-----	-----------	-------

SECTION 12: Ecological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 12 are based on UN GHS calculation rules and classifications derived from 3M assessments.

12.1. Toxicity

No product test data available

Material	Cas #	Organism	Type	Exposure	Test Endpoint	Test Result
3(2H)- Isothiazolone,	55965-84-9	Diatom	Experimental	72	No obs Effect Conc	0.01 mg/l
5-chloro-2-						
methyl-, mixt.						
with 2-methyl-						
3(2H)-						
isothiazolone.						
3(2H)-	55965-84-9	Diatom	Experimental	72 hours	Effect	0.021 mg/l
Isothiazolone,					Concentration	
5-chloro-2-					50%	
methyl-, mixt.						
with 2-methyl-						
3(2H)-						
isothiazolone.						
3(2H)-	55965-84-9	Water flea	Experimental	48 hours	Effect	0.18 mg/l
Isothiazolone,					Concentration	
5-chloro-2-					50%	
methyl-, mixt.						
with 2-methyl-						
3(2H)-						
isothiazolone.						

12.2. Persistence and degradability

Material	CAS No.	Test Type	Duration	Study Type	Test Result	Protocol
3(2H)-	55965-84-9	Data not	N/A	N/A	N/A	N/A
Isothiazolone,		available or				
5-chloro-2-		insufficient for				
methyl-, mixt.		classification				
with 2-methyl-						

G77, Gold Class	G77, Gold Class Spray Wax (22-66A): G7716					
3(2H)-isothiazolone.						
isothiozolono						
isomiazoione.						

12.3. Bioaccumulative potential

Material	CAS No.	Test Type	Duration	Study Type	Test Result	Protocol
3(2H)-	55965-84-9	Data not	N/A	N/A	N/A	N/A
Isothiazolone,		available or				
5-chloro-2-		insufficient for				
methyl-, mixt.		classification				
with 2-methyl-						
3(2H)-						
isothiazolone.						

12.4. Mobility in soil

Please contact manufacturer for more details

12.5. Results of the PBT and vPvB assessment

No information available at this time, contact manufacturer for more details

12.6. Other adverse effects

No information available

The surfactant(s) contained in this preparation comply with the biodegradability criteria as laid down in Regulation (EC) No.648/2004 on detergents.

SECTION 13: Disposal considerations

13.1 Waste treatment methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Prior to disposal, consult all applicable authorities and regulations to insure proper classification. Dispose of waste product in a permitted industrial waste facility. Empty and clean product containers may be disposed as non-hazardous waste. Consult your specific regulations and service providers to determine available options and requirements.

The coding of a waste stream is based on the application of the product by the consumer. Since this is out of the control of the manufacturer, no waste code(s) for products after use will be provided. Please refer to the European Waste Code (EWC - 2000/532/CE and amendments) to assign the correct waste code to your waste stream. Ensure national and/or regional regulations are complied with and always use a licensed waste contractor

EU waste code (product as sold)

200130 Detergents other than those mentioned in 20 01 29

SECTION 14: Transportation information

ADR/IMDG/IATA: Not restricted for transport.

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Global inventory status

Contact manufacturer for more information The components of this material are in compliance with the provisions of Australia National Industrial Chemical Notification and Assessment Scheme (NICNAS). Certain restrictions may apply. Contact the selling division for additional information. The components of this material are in compliance with the provisions of Philippines RA 6969 requirements. Certain restrictions may apply. Contact the selling division for additional information. The components of this product are in compliance with the chemical notification requirements of TSCA. This product complies with Measures on Environmental Management of New Chemical Substances. All ingredients are listed on or exempt from on China IECSC inventory.

15.2. Chemical Safety Assessment

Not applicable

SECTION 16: Other information

List of relevant H statements

H301	Toxic if swallowed.
H311	Toxic in contact with skin.
H314	Causes severe skin burns and eye damage.
H317	May cause an allergic skin reaction.
H331	Toxic if inhaled.
H400	Very toxic to aquatic life.
H410	Very toxic to aquatic life with long lasting effect

Revision information:

Section 03: Composition/ Information of ingredients table information was added.

Section 03: Composition/Information of ingredients table information was deleted.

Section 09: Relative density information information was modified.

Section 11: Acute Toxicity table information was modified.

Section 11: Reproductive Toxicity Table information was modified.

G77, Gold Class Spray Wax (22-66A): G7716
DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.
Meguiar's, Inc. Greece SDSs are available at GR_GCSL - Local Meguiar's Website

Page: 14 of 14