

Safety Data Sheet

Copyright, 2017, Meguiar's, Inc. All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing Meguiar's, Inc. products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from Meguiar's, Inc., and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document Group:
 32-5975-1
 Version Number:
 1.02

 Revision Date:
 11/04/2017
 Supercedes Date:
 22/03/2016

This Safety Data Sheet has been prepared in accordance with the REACH Regulation (1907/2006) and its modifications

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

G164 Car Odor Aerosol (26-110A) - New Car Scent (13102901): G16402

Product Identification Numbers

LB-1100-1458-7 14-1000-9047-2

1.2. Relevant identified uses of the substance or mixture and uses advised against

Identified uses

Automotive

1.3. Details of the supplier of the safety data sheet

ADDRESS: GR_GCSL - Local CUNO Address
Telephone: GR_GCSL - Local Meguiar's Telephone
E Mail: GR_GCSL - Local Meguiar's Email
Website: GR_GCSL - Local Meguiar's Website

1.4. Emergency telephone number

GR_GCSL - Local Meguiar's Emergency Telephone

SECTION 2: Hazard identification

2.1. Classification of the substance or mixture CLP REGULATION (EC) No 1272/2008

CLASSIFICATION:

Aerosol, Category 1 - Aerosol 1; H222, H229

For full text of H phrases, see Section 16.

2.2. Label elements

CLP REGULATION (EC) No 1272/2008

SIGNAL WORD

Danger

Symbols:

GHS02 (Flame) |

Pictograms

HAZARD STATEMENTS:

H222 Extremely flammable aerosol.

H229 Pressurized container: may burst if heated.

PRECAUTIONARY STATEMENTS

General:

P102 Keep out of reach of children.

Prevention:

P210A Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.

P211 Do not spray on an open flame or other ignition source.

P251 Do not pierce or burn, even after use.

Storage:

P410 + P412 Protect from sunlight. Do not expose to temperatures exceeding 50C/122F.

For containers not exceeding 125 ml the following Hazard and Precautionary statements may be used:

<=125 ml Hazard statements

H222 Extremely flammable aerosol.

H229 Pressurized container: may burst if heated.

<=125 ml Precautionary statements

General:

P102 Keep out of reach of children.

Prevention:

P210A Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.

P211 Do not spray on an open flame or other ignition source.

P251 Do not pierce or burn, even after use.

Storage:

P410 + P412 Protect from sunlight. Do not expose to temperatures exceeding 50C/122F.

SUPPLEMENTAL INFORMATION

Supplemental Hazard Statements:

EUH208 Contains SWEET ORANGE PEEL TINCTURE. May produce an allergic reaction.

72% of the mixture consists of components of unknown acute oral toxicity.

Contains 72% of components with unknown hazards to the aquatic environment.

2.3. Other hazards

None known

SECTION 3: Composition/information on ingredients

Ingredient	C.A.S. No.	EC No.	REACH Registration No.	% by Wt	Classification
Propene, 1,3,3,3,-tetrafluoro-,(E)-	29118-24-9			60 - 80	Substance not classified as hazardous
Ethyl Alcohol	64-17-5	200-578-6	01- 2119457610- 43	10 - 30	**Flam. Liq. 2**, H225 **Eye Irrit. 2**, H319
Dipropylene Glycol	25265-71-8	246-770-3	01- 2119456811- 38	1 - 5	Substance not classified as hazardous
SWEET ORANGE PEEL TINCTURE	8028-48-6	232-433-8		< 0.5	**Aquatic Chronic 2**, H411 **Flam. Liq. 3**, H226; **Asp. Tox. 1**, H304; **Skin Irrit. 2**, H315; **Skin Sens. 1**, H317
2,6-Dimethylphenol	576-26-1	209-400-1		< 0.5	**Acute Tox. 3**, H311; **Acute Tox. 3**, H301; **Skin Corr. 1B**, H314; **Aquatic Chronic 2**, H411 - Nota C
Benzyl Benzoate	120-51-4	204-402-9		< 0.3	**Acute Tox. 4**, H302; **Aquatic Chronic 2**, H411
Ethanone, 1-(5,6,7,8-tetrahydro-3,5,5,6,8,8-hexamethyl-2-naphthalenyl)-	1506-02-1	216-133-4		< 0.2	**Aquatic Acute 1**, H400,M=1; **Aquatic Chronic 1**, H410,M=1

Please see section 16 for the full text of any H statements referred to in this section

For information on ingredient occupational exposure limits or PBT or vPvB status, see sections 8 and 12 of this SDS

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation:

Remove person to fresh air. If you feel unwell, get medical attention.

Immediately wash with soap and water. Remove contaminated clothing and wash before reuse. If signs/symptoms develop,

get medical attention.

Eye Contact:

No need for first aid is anticipated.

If Swallowed:

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

See Section 11.1. Information on toxicological effects.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Extinguishing media

Use a fire fighting agent suitable for the surrounding fire.

5.2. Special hazards arising from the substance or mixture

Closed containers exposed to heat from fire may build pressure and explode.

Hazardous Decomposition or By-Products

SubstanceConditionCarbon monoxideDuring CombustionCarbon dioxideDuring CombustionHydrogen FluorideDuring Combustion

5.3. Advice for fire-fighters

Water may not effectively extinguish fire; however, it should be used to keep fire-exposed containers and surfaces cool and prevent explosive rupture. When fire fighting conditions are severe and total thermal decomposition of the product is possible, wear full protective clothing, including helmet, self-contained, positive pressure or pressure demand breathing apparatus, bunker coat and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.

SECTION 6: Accidental release measures

${\bf 6.1.}\ Personal\ precautions,\ protective\ equipment\ and\ emergency\ procedures$

Evacuate area. Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Use only non-sparking tools. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. Warning! A motor could be an ignition source and could cause flammable gases or vapors in the spill area to burn or explode. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

Contain spill. Working from around the edges of the spill inward, cover with bentonite, vermiculite, or commercially available inorganic absorbent material. Mix in sufficient absorbent until it appears dry. Remember, adding an absorbent material does not remove a physical, health, or environmental hazard. Collect as much of the spilled material as possible using non-sparking tools. Place in a metal container approved for transportation by appropriate authorities. Dispose of collected material as soon as possible.

6.4. Reference to other sections

Refer to Section 8 and Section 13 for more information

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Do not breathe thermal decomposition products. Keep out of reach of children. Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Do not spray on an open flame or other ignition source. Do not pierce or burn, even after use. Avoid breathing dust/fume/gas/mist/vapors/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Contaminated work clothing should not be allowed out of the workplace. Avoid release to the environment. Wash contaminated clothing before reuse. Avoid contact with oxidizing agents (eg. chlorine, chromic acid etc.)

7.2. Conditions for safe storage including any incompatibilities

Store in a well-ventilated place. Keep container tightly closed. Protect from sunlight. Do not expose to temperatures exceeding 50C/122F. Store away from heat. Store away from acids. Store away from oxidizing agents.

7.3. Specific end use(s)

See information in Section 7.1 and 7.2 for handling and storage recommendations. See Section 8 for exposure controls and personal protection recommendations.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient C.A.S. No. Agency Limit type Additional Comments
Ethyl Alcohol 64-17-5 Greece OELs TWA(8 hours):1900
mg/m3(1000 ppm)

Greece OELs: Greece. OELs (Decree No. 90/1999, as amended)

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling

8.2. Exposure controls

8.2.1. Engineering controls

Provide appropriate local exhaust when product is heated. Use general dilution ventilation and/or local exhaust ventilation to control airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapors/spray. If ventilation is not adequate, use respiratory protection equipment.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Full Face Shield

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing. Note: Nitrile gloves may be worn over polymer laminate gloves to improve dexterity. Gloves made from the following material(s) are recommended:

MaterialThickness (mm)Breakthrough TimePolymer laminateNo data availableNo data available

If this product is used in a manner that presents a higher potential for exposure (eg. spraying, high splash potential etc.), then use of protective coveralls may be necessary. Select and use body protection to prevent contact based on the results of an exposure assessment. The following protective clothing material(s) are recommended: Apron - polymer laminate

Respiratory protection

Use a positive pressure supplied-air respirator if there is a potential for over exposure from an uncontrolled release, exposure levels are not known, or under any other circumstances where air-purifying respirators may not provide adequate protection. An exposure assessment may be needed to decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program. Based on the results of the exposure assessment, select from the following respirator type(s) to reduce inhalation exposure:

Half facepiece or full facepiece air-purifying respirator suitable for organic vapors

For questions about suitability for a specific application, consult with your respirator manufacturer.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state Liquid

Appearance/Odor Leather odor with hint of vanilla

Odor thresholdNo Data AvailablepHNot ApplicableBoiling point/boiling rangeNo Data AvailableMelting pointNo Data AvailableFlammability (solid, gas)Not ApplicableExplosive properties:Not ClassifiedOxidising properties:Not Classified

Flash Point >=14.4 °C [Details:flash point of ethyl alcohol]

Autoignition temperature

Flammable Limits(LEL)

Flammable Limits(UEL)

No Data Available

Relative Density 0.81 [*Ref Std*:WATER=1]

Water solubility No Data Available

Solubility- non-water No Data Available

Partition coefficient: n-octanol/ waterNo Data AvailableEvaporation rateNo Data AvailableVapor DensityNo Data Available

Decomposition temperatureNo Data Available**Viscosity**No Data Available

Density 0.81 g/ml

9.2. Other information

Molecular weightNo Data AvailablePercent volatile98.4 % weight

SECTION 10: Stability and reactivity

10.1. Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section.

10.2. Chemical stability

Stable.

10.3. Possibility of hazardous reactions

Hazardous polymerization will not occur.

10.4. Conditions to avoid

Sparks and/or flames Heat

10.5. Incompatible materials

Strong oxidizing agents

10.6. Hazardous decomposition products **Substance**

None known.

Condition

Refer to section 5.2 for hazardous decomposition products during combustion.

Extreme heat arising from situations such as misuse or equipment failure can generate hydrogen fluoride as a decomposition product.

SECTION 11: Toxicological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 11 are based on UN GHS calculation rules and classifications derived from 3M assessments.

11.1. Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation:

Respiratory Tract Irritation: Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness, and nose and throat pain.

May cause additional health effects (see below).

Skin Contact:

Contact with the skin during product use is not expected to result in significant irritation. Allergic Skin Reaction (non-photo induced): Signs/symptoms may include redness, swelling, blistering, and itching.

Eye Contact:

Contact with the eyes during product use is not expected to result in significant irritation.

Ingestion:

May cause additional health effects (see below).

Additional Health Effects:

Single exposure may cause target organ effects:

Central Nervous System (CNS) Depression: Signs/symptoms may include headache, dizziness, drowsiness, incoordination, nausea, slowed reaction time, slurred speech, giddiness, and unconsciousness.

Additional Information:

This product contains ethanol. Alcoholic beverages and ethanol in alcoholic beverages have been classified by the International Agency for Research on Cancer as carcinogenic to humans. There are also data associating human consumption of alcoholic beverages with developmental toxicity and liver toxicity. Exposure to ethanol during the foreseeable use of this product is not expected to cause cancer, developmental toxicity, or liver toxicity.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Dermal		No data available; calculated ATE >5,000 mg/kg
Overall product	Inhalation- Vapor(4 hr)		No data available; calculated ATE >50 mg/l
Overall product	Ingestion		No data available; calculated ATE >5,000 mg/kg
Ethyl Alcohol	Dermal	Rabbit	LD50 > 15,800 mg/kg
Ethyl Alcohol	Inhalation- Vapor (4 hours)	Rat	LC50 124.7 mg/l
Ethyl Alcohol	Ingestion	Rat	LD50 17,800 mg/kg
Dipropylene Glycol	Dermal	Rabbit	LD50 > 5,010 mg/kg
Dipropylene Glycol	Inhalation- Dust/Mist (4 hours)	Rat	LC50 > 2.34 mg/l
Dipropylene Glycol	Ingestion	Rat	LD50 > 5,010 mg/kg
2,6-Dimethylphenol	Dermal		estimated to be 200 - 1,000 mg/kg
2,6-Dimethylphenol	Inhalation- Dust/Mist		estimated to be > 12.5 mg/l
2,6-Dimethylphenol	Inhalation- Vapor		estimated to be > 50 mg/l
2,6-Dimethylphenol	Ingestion		estimated to be 50 - 300 mg/kg
SWEET ORANGE PEEL TINCTURE	Inhalation- Vapor (4 hours)	Mouse	LC50 > 3.14 mg/l
SWEET ORANGE PEEL TINCTURE	Dermal	Rabbit	LD50 > 5,000 mg/kg

SWEET ORANGE PEEL TINCTURE	Ingestion	Rat	LD50 4,400 mg/kg
Benzyl Benzoate	Dermal	Rabbit	LD50 4,000 mg/kg
Benzyl Benzoate	Ingestion	Rat	LD50 1,894 mg/kg

 \overline{ATE} = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
Ethyl Alcohol	Rabbit	No significant irritation
Dipropylene Glycol	Rabbit	No significant irritation
SWEET ORANGE PEEL TINCTURE	Rabbit	Mild irritant

Serious Eye Damage/Irritation

Scribus Lyc Dumage, minution		
Name	Species	Value
Ethyl Alcohol	Rabbit	Severe irritant
Dipropylene Glycol	Rabbit	No significant irritation
SWEET ORANGE PEEL TINCTURE	Rabbit	Mild irritant

Skin Sensitization

Name	Species	Value
Ethyl Alcohol	Human	Some positive data exist, but the data are not sufficient for classification
Dipropylene Glycol	Guinea pig	Not sensitizing
SWEET ORANGE PEEL TINCTURE	Mouse	Sensitizing

Respiratory Sensitization

For the component/components, either no data are currently available or the data are not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value		
Ethyl Alcohol	In Vitro	Some positive data exist, but the data are not sufficient for classification		
Ethyl Alcohol	In vivo	Some positive data exist, but the data are not sufficient for classification		
Dipropylene Glycol	In Vitro	Not mutagenic		
Dipropylene Glycol	In vivo	Not mutagenic		
SWEET ORANGE PEEL TINCTURE	In Vitro	Not mutagenic		
SWEET ORANGE PEEL TINCTURE	In vivo	Not mutagenic		

Carcinogenicity

Name	Route	Species	Value
Ethyl Alcohol	Ingestion	Multiple	Some positive data exist, but the data are not

		animal species	sufficient for classification
Dipropylene Glycol	Ingestion	Multiple animal species	Not carcinogenic
SWEET ORANGE PEEL TINCTURE	Ingestion	Rat	Some positive data exist, but the data are not sufficient for classification

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test Result	Exposure Duration
Ethyl Alcohol	Inhalation	Not toxic to development	Rat	NOAEL 38 mg/l	during gestation
Ethyl Alcohol	Ingestion	Some positive developmental data exist, but the data are not sufficient for classification	Rat	NOAEL 5,200 mg/kg/day	premating & during gestation
Dipropylene Glycol	Ingestion	Not toxic to development	Rat	NOAEL 5,000 mg/kg/day	during organogenesis
SWEET ORANGE PEEL TINCTURE	Ingestion	Some positive female reproductive data exist, but the data are not sufficient for classification	Rat	NOAEL 750 mg/kg/day	premating & during gestation
SWEET ORANGE PEEL TINCTURE	Ingestion	Some positive developmental data exist, but the data are not sufficient for classification	Multiple animal species	NOAEL 591 mg/kg/day	during organogenesis

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
Ethyl Alcohol	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	LOAEL 2.6 mg/l	30 minutes
Ethyl Alcohol	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human	LOAEL 9.4 mg/l	not available
Ethyl Alcohol	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Multiple animal species	NOAEL not available	
Ethyl Alcohol	Ingestion	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Dog	NOAEL 3,000 mg/kg	
SWEET ORANGE PEEL TINCTURE	Ingestion	nervous system	Some positive data exist, but the data are not sufficient for classification		NOAEL Not available	

Specific Target Organ Toxicity - repeated exposure

Specific Target Organ	TUXICITY -	repeateu exposure	,			
Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
Ethyl Alcohol	Inhalation	liver	Some positive data exist, but the data are not sufficient for classification	Rabbit	LOAEL 124 mg/l	365 days

Ethyl Alcohol	Inhalation	hematopoietic system immune system	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 25 mg/l	14 days
Ethyl Alcohol	Ingestion	liver	Some positive data exist, but the data are not sufficient for classification	Rat	LOAEL 8,000 mg/kg/day	4 months
Ethyl Alcohol	Ingestion	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Dog	NOAEL 3,000 mg/kg/day	7 days
Dipropylene Glycol	Ingestion	respiratory system heart	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 470 mg/kg/day	105 weeks
Dipropylene Glycol	Ingestion	endocrine system liver	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 3,040 mg/kg/day	105 weeks
Dipropylene Glycol	Ingestion	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 115 mg/kg/day	105 weeks
Dipropylene Glycol	Ingestion	skin bone, teeth, nails, and/or hair hematopoietic system immune system nervous system vascular system	All data are negative	Rat	NOAEL 3,040 mg/kg/day	105 weeks
SWEET ORANGE PEEL TINCTURE	Ingestion	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Rat	LOAEL 75 mg/kg/day	103 weeks
SWEET ORANGE PEEL TINCTURE	Ingestion	liver	Some positive data exist, but the data are not sufficient for classification	Mouse	NOAEL 1,000 mg/kg/day	103 weeks
SWEET ORANGE PEEL TINCTURE	Ingestion	heart endocrine system bone, teeth, nails, and/or hair hematopoietic system immune system muscles nervous system respiratory system	All data are negative	Rat	NOAEL 600 mg/kg/day	103 weeks

Aspiration Hazard

Name	Value
SWEET ORANGE PEEL TINCTURE	Aspiration hazard

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 12 are based on UN GHS calculation rules and classifications derived from 3M assessments.

12.1. Toxicity

No product test data available

Material	Cas #	Organism	Туре	Exposure	Test Endpoint	Test Result
Benzyl Benzoate	120-51-4	Green Algae	Experimental	72 hours	No obs Effect Conc	0.247 mg/l
Benzyl Benzoate	120-51-4	Green Algae	Experimental	72 hours	Effect Concentration 50%	0.475 mg/l
Benzyl Benzoate	120-51-4	Rainbow Trout	Experimental	96 hours	Lethal Concentration 50%	1.4 mg/l
Benzyl Benzoate	120-51-4	Gammarid scud	Experimental	96 hours	Lethal Concentration 50%	4.8 mg/l
Dipropylene Glycol	25265-71-8	Goldfish	Experimental	96 hours	Lethal Concentration 50%	>5,000 mg/l
Dipropylene Glycol	25265-71-8	Algae	Experimental	72 hours	Effect Concentration 50%	>100 mg/l
Dipropylene Glycol	25265-71-8	Water flea	Experimental	48 hours	Effect Concentration 50%	>100 mg/l
Propene, 1,3,3,3,- tetrafluoro- ,(E)-	29118-24-9		Data not available or insufficient for classification			
SWEET ORANGE PEEL TINCTURE	8028-48-6		Data not available or insufficient for classification			
2,6- Dimethylpheno 1	576-26-1		Data not available or insufficient for classification			
2,6- Dimethylpheno	576-26-1	Ricefish	Experimental	96 hours	Lethal Concentration 50%	15 mg/l
2,6- Dimethylpheno	576-26-1	Water flea	Experimental	48 hours	Effect Concentration 50%	11 mg/l
2,6- Dimethylpheno	576-26-1	Water flea	Experimental	21 days	No obs Effect Conc	0.54 mg/l
2,6- Dimethylpheno	576-26-1	Green Algae	Experimental	72 hours	Effect Concentration 50%	45 mg/l
2,6- Dimethylpheno l	576-26-1	Green Algae	Experimental	72 hours	No obs Effect Conc	2 mg/l
Ethanone, 1- (5,6,7,8- tetrahydro-	1506-02-1	Crustecea other	Experimental	48 hours	Effect Concentration 50%	0.61 mg/l

255600	1		1	1		
3,5,5,6,8,8-						
hexamethyl-2-						
naphthalenyl)-	1.50 - 0.0 1			0.51		1 10 7
Ethanone, 1-	1506-02-1	Fathead	Experimental	96 hours	Lethal	1.49 mg/l
(5,6,7,8-		Minnow			Concentration	
tetrahydro-					50%	
3,5,5,6,8,8-						
hexamethyl-2-						
naphthalenyl)-						
Ethanone, 1-	1506-02-1	Green Algae	Experimental	72 hours	No obs Effect	0.405 mg/l
(5,6,7,8-					Conc	
tetrahydro-						
3,5,5,6,8,8-						
hexamethyl-2-						
naphthalenyl)-						
Ethanone, 1-	1506-02-1	Water flea	Experimental	21 days	No obs Effect	0.196 mg/l
(5,6,7,8-					Conc	
tetrahydro-						
3,5,5,6,8,8-						
hexamethyl-2-						
naphthalenyl)-						
Ethanone, 1-	1506-02-1	Fathead	Experimental	36 days	No obs Effect	0.035 mg/l
(5,6,7,8-		Minnow			Conc	
tetrahydro-						
3,5,5,6,8,8-						
hexamethyl-2-						
naphthalenyl)-						
Ethanone, 1-	1506-02-1	Crustecea other	Experimental	48 hours	Lethal	0.61 mg/l
(5,6,7,8-					Concentration	
tetrahydro-					50%	
3,5,5,6,8,8-						
hexamethyl-2-						
naphthalenyl)-						
Ethyl Alcohol	64-17-5	Green algae	Experimental	96 hours	Effect	1,000 mg/l
					Concentration	
					50%	
Ethyl Alcohol	64-17-5	Water flea	Experimental	48 hours	Effect	5,012 mg/l
			1		Concentration	, 8
					50%	
Ethyl Alcohol	64-17-5	Rainbow Trout	Experimental	96 hours	Lethal	42 mg/l
			T .		Concentration	8
					50%	
Ethyl Alcohol	64-17-5	Green algae	Experimental	96 hours	No obs Effect	<500 mg/l
		Signi aigue		20110415	Conc	
Ethyl Alcohol	64-17-5	Water flea	Experimental	11 days	No obs Effect	9.6 mg/l
20171711001101	011/3	Tracer fiea	Lapermiental	11 duys	Conc	7.0 1116/1
Ethyl Alcohol	64-17-5	Water flea	Experimental	48 hours	Effect	9,300 mg/l
Lary 1 Media	07 17 3	Tracer rica	Experimental	ro nouis	Concentration),500 mg/1
					50%	
			1		JU /0	

12.2. Persistence and degradability

Material	CAS No.	Test Type	Duration	Study Type	Test Result	Protocol
Dipropylene	25265-71-8	Experimental	28 days	Biological	16 % weight	OECD 301D - Closed
Glycol		Biodegradation		Oxygen		Bottle Test
				Demand		
Ethyl Alcohol	64-17-5	Experimental	14 days	Biological	89 % weight	OECD 301C - MITI (I)
		Biodegradation		Oxygen		
				Demand		
Ethanone, 1-	1506-02-1	Experimental	28 days	Carbon dioxide	0 % weight	OECD 301B - Mod.
(5,6,7,8-		Biodegradation		evolution		Sturm or CO2
tetrahydro-						
3,5,5,6,8,8-						
hexamethyl-2-						
naphthalenyl)-						
Benzyl	120-51-4	Experimental	28 days	Biological	90 % weight	OECD 301C - MITI (I)
Benzoate		Biodegradation		Oxygen		
				Demand		
SWEET	8028-48-6	Data not	N/A	N/A	N/A	N/A
ORANGE		available or				
PEEL		insufficient for				
TINCTURE		classification				
Benzyl	120-51-4	Estimated		Photolytic half-	4.3 days (t 1/2)	Other methods
Benzoate		Photolysis		life (in air)		
2,6-	576-26-1	Experimental	28 days	Biological	2 % weight	OECD 301C - MITI (I)
Dimethylpheno		Biodegradation		Oxygen		
1				Demand		
2,6-	576-26-1	Data not	N/A	N/A	N/A	N/A
Dimethylpheno		available or				
1		insufficient for				
		classification				
Propene,	29118-24-9	Data not	N/A	N/A	N/A	N/A
1,3,3,3,-		available or				
tetrafluoro-		insufficient for				
,(E)-		classification				

12.3. Bioaccumulative potential

Material	CAS No.	Test Type	Duration	Study Type	Test Result	Protocol
Dipropylene	25265-71-8	Experimental	42 days	Bioaccumulatio	4.6	OECD 305E-Bioaccum
Glycol		BCF - Other		n Factor		Fl-thru fis
Ethyl Alcohol	64-17-5	Estimated	28 days	Bioaccumulatio	3.16	Est: Bioconcentration
		Bioconcentrati		n Factor		factor
		on				
Ethyl Alcohol	64-17-5	Experimental		Log of	-0.31	Other methods
		Bioconcentrati		Octanol/H2O		
		on		part. coeff		
Benzyl	120-51-4	Estimated		Bioaccumulatio	48	Est: Bioconcentration
Benzoate		Bioconcentrati		n Factor		factor
		on				
Dipropylene	25265-71-8	Experimental	42 days	Bioaccumulatio	4.6	OECD 305E-Bioaccum
Glycol		BCF-Carp		n Factor		Fl-thru fis
SWEET	8028-48-6	Data not	N/A	N/A	N/A	N/A
ORANGE		available or				

PEEL TINCTURE		insufficient for classification				
2,6- Dimethylpheno	576-26-1	Experimental Bioconcentrati on		Log of Octanol/H2O part. coeff	2.33	Other methods
2,6- Dimethylpheno l	576-26-1	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Ethanone, 1- (5,6,7,8- tetrahydro- 3,5,5,6,8,8- hexamethyl-2- naphthalenyl)-	1506-02-1	Experimental BCF - Bluegill	28 days	Bioaccumulatio n Factor	597 % weight	OECD 305E-Bioaccum Fl-thru fis
Propene, 1,3,3,3,- tetrafluoro- ,(E)-	29118-24-9	Data not available or insufficient for classification	N/A	N/A	N/A	N/A

12.4. Mobility in soil

Please contact manufacturer for more details

12.5. Results of the PBT and vPvB assessment

No information available at this time, contact manufacturer for more details

12.6. Other adverse effects

Material	CAS No.	Ozone Depletion Potential	Global Warming Potential
ethyl alcohol	64-17-5	0	

SECTION 13: Disposal considerations

13.1 Waste treatment methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Incinerate in a permitted waste incineration facility. Facility must be capable of handling aerosol cans. Combustion products will include HF. Facility must be capable of handling halogenated materials.

As a disposal alternative, utilize an acceptable permitted waste disposal facility. Empty drums/barrels/containers used for transporting and handling hazardous chemicals (chemical substances/mixtures/preparations classified as Hazardous as per applicable regulations) shall be considered, stored, treated & disposed of as hazardous wastes unless otherwise defined by applicable waste regulations. Consult with the respective regulating authorities to determine the available treatment and disposal facilities.

The coding of a waste stream is based on the application of the product by the consumer. Since this is out of the control of the manufacturer, no waste code(s) for products after use will be provided. Please refer to the European Waste Code (EWC - 2000/532/CE and amendments) to assign the correct waste code to your waste stream. Ensure national and/or regional regulations are complied with and always use a licensed waste contractor

EU waste code (product as sold)

160504* Gases in pressure containers (including halons) containing dangerous substances

EU waste code (product container after use)

150104 Metallic packaging

SECTION 14: Transportation information

ADR: UN1950 AEROSOLS, flammable; 2.1; (D); 5F IATA: UN1950 AEROSOLS, flammable; 2.1 (ENG)

IMDG: UN1950 AEROSOLS, flammable; 2.1; EmS: F-D,S-U (ENG)

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Global inventory status

Contact manufacturer for more information The components of this product are in compliance with the chemical notification requirements of TSCA.

15.2. Chemical Safety Assessment

Not applicable

SECTION 16: Other information

List of relevant H statements

H222	Extremely flammable aerosol.
H225	Highly flammable liquid and vapor.
H226	Flammable liquid and vapor.
H229	Pressurized container. may burst if heated.
H301	Toxic if swallowed.
H302	Harmful if swallowed.
H304	May be fatal if swallowed and enters airways.
H311	Toxic in contact with skin.
H314	Causes severe skin burns and eye damage.
H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H319	Causes serious eye irritation.

H400 Very toxic to aquatic life.

H410 Very toxic to aquatic life with long lasting effects.
 H411 Toxic to aquatic life with long lasting effects.

Revision information:

Section 01: Product name information was modified.

Section 02: <125ml Hazard - Phys/Chem information was added.

Section 02: <125ml Precautionary - General information was added.

Section 02: <125ml Precautionary - Prevention information was added.

Section 02: <125ml Precautionary - Storage information was added.

Section 02: Label Elements: CLP Percent Unknown information was added.

Section 02: Label Elements: CLP Precautionary - General information was modified.

Section 03: Composition/Information of ingredients table information was added.

Section 03: Composition/Information of ingredients table information was deleted.

Section 04: First Aid - notes to physician (REACH/GHS) information was modified.

Section 04: First aid for eye contact information information was modified.

Section 04: First aid for inhalation information information was modified.

Section 06: Accidental release clean-up information information was modified.

Section 07: Conditions safe storage information was modified.

Section 07: Precautions safe handling information information was modified.

Section 08: Appropriate Engineering controls information information was modified.

Section 08: Eye/face protection information information was modified.

Section 08: Occupational exposure limit table information was modified.

Section 08: Respiratory protection - recommended respirators information information was modified.

Section 09: Density information information was modified.

Section 09: Flash point information information was modified.

Section 09: Property description for optional properties information was modified.

Section 09: Relative density information information was modified.

Section 11: Acute Toxicity table information was modified.

Section 11: Carcinogenicity Table information was modified.

Section 11: Germ Cell Mutagenicity Table information was modified.

Section 11: Health Effects - Eye information information was modified.

Section 11: Health Effects - Inhalation information information was modified.

Section 11: Reproductive Toxicity Table information was modified.

Section 11: Serious Eye Damage/Irritation Table information was modified.

Section 11: Single exposure may cause standard phrases information was modified.

Section 11: Skin Corrosion/Irritation Table information was modified.

Section 11: Skin Sensitization Table information was modified.

Section 11: Target Organs - Repeated Table information was modified.

Section 11: Target Organs - Single Table information was modified.

Section 12: Component ecotoxicity information information was modified.

Section 12: Persistence and Degradability information information was modified.

Section 12:Bioccumulative potential information information was modified.

Section 13: Standard Phrase Category Waste GHS information was modified.

Section 15: Carcinogenicity information information was deleted.

Section 16: Two-column table displaying the unique list of H Codes and statements (std phrses) for all components of the given material. information was modified.

G164 Car Odor Aerosol (26-110A) - New Car Scent (13102901): G16402
DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.
Meguiar's, Inc. Greece SDSs are available at GR_GCSL - Local Meguiar's Website

Page: 20 of 20