

Safety Data Sheet

Copyright, 2016, Meguiar's, Inc. All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing Meguiar's, Inc. products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from Meguiar's, Inc., and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

This product is defined as an article under REACH and does not require a Safety Data Sheet under Article 31 of Regulation (EC) No. 1907/2006. Since an SDS is not required, this document does not contain all of the information that is required for substance and mixture SDSs under REACH.

 Document Group:
 30-0933-9
 Version Number:
 1.01

 Revision Date:
 23/12/2016
 Supercedes Date:
 28/05/2015

This Safety Data Sheet has been prepared in accordance with the REACH Regulation (1907/2006) and its modifications

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

C2100, Mirror Glaze Professional Detailing Clay (Aggressive)

Product Identification Numbers

14-1000-0130-5

1.2. Relevant identified uses of the substance or mixture and uses advised against

Identified uses

Automotive

1.3. Details of the supplier of the safety data sheet

ADDRESS: GR_GCSL - Local CUNO Address
Telephone: GR_GCSL - Local Meguiar's Telephone
E Mail: GR_GCSL - Local Meguiar's Email
Website: GR_GCSL - Local Meguiar's Website

1.4. Emergency telephone number

GR_GCSL - Local Meguiar's Emergency Telephone

SECTION 2: Hazard identification

2.1. Classification of the substance or mixture CLP REGULATION (EC) No 1272/2008

CLASSIFICATION:

This material is exempt from hazard classification according to Regulation (EC) No. 1272/2008, as amended, on classification, labelling, and packaging of substances and mixtures.

2.2. Label elements CLP REGULATION (EC) No 1272/2008 Not applicable

C2100, Mirror Glaze Professional Detailing Clay (Aggressive)
2.3. Other hazards

None known

SECTION 3: Composition/information on ingredients

Ingredient	C.A.S. No.	EU Inventory	% by Wt	Classification
Calcium Carbonate	471-34-1	207-439-9	40 - 60	Substance not classified as
				hazardous
Polybutylene	9003-29-6	NLP 500-004-	20 - 40	Substance not classified as
		7		hazardous
Silica	7631-86-9	231-545-4	10 - 30	Substance not classified as
				hazardous
Talc	14807-96-6	238-877-9	10 - 30	Substance with a Community
				level exposure limit in the
				workplace

Please see section 16 for the full text of any H statements referred to in this section

For information on ingredient occupational exposure limits or PBT or vPvB status, see sections 8 and 12 of this SDS

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation:

No need for first aid is anticipated.

Skin Contact:

No need for first aid is anticipated.

Eye Contact:

No need for first aid is anticipated.

If Swallowed:

No need for first aid is anticipated.

4.2. Most important symptoms and effects, both acute and delayed

See Section 11.1. Information on toxicological effects.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

None inherent in this product.

Hazardous Decomposition or By-Products

Substance
Carbon monoxide
Carbon dioxide

Condition

During Combustion
During Combustion

5.3. Advice for fire-fighters

No special protective actions for fire-fighters are anticipated.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Not applicable.

6.2. Environmental precautions

Not applicable.

6.3. Methods and material for containment and cleaning up

Not applicable.

6.4. Reference to other sections

Refer to Section 8 and Section 13 for more information

SECTION 7: Handling and storage

7.1. Precautions for safe handling

This product is considered to be an article which does not release or otherwise result in exposure to a hazardous chemical under normal use conditions.

7.2. Conditions for safe storage including any incompatibilities

Not applicable.

7.3. Specific end use(s)

See information in Section 7.1 and 7.2 for handling and storage recommendations. See Section 8 for exposure controls and personal protection recommendations.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient C.A.S. No. Agency Limit type Additional Comments
Talc 14807-96-6 Greece OELs TWA(Inhalable)(8 hours):10

alc 14807-96-6 Greece OELs TWA(Inhalable)(8 hours):10 mg/m3;TWA(respirable)(8

 $hours) : 2 \ mg/m3$ Greece OELs : Greece. OELs (Decree No. 90/1999, as amended)

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling

8.2. Exposure controls

8.2.1. Engineering controls

Not applicable.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Eye protection not required.

Skin/hand protection

No chemical protective gloves are required.

Respiratory protection

Respiratory protection is not required.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical stateSolidSpecific Physical Form:Clay

Red; typical odor Appearance/Odor **Odor threshold** No Data Available No Data Available Boiling point/boiling range No Data Available **Melting point** No Data Available Flammability (solid, gas) Not Classified **Explosive properties:** Not Classified **Oxidising properties:** Not Classified **Flash Point** No flash point **Autoignition temperature** No Data Available Flammable Limits(LEL) No Data Available Flammable Limits(UEL) No Data Available No Data Available **Vapor Pressure Relative Density** 2 [Ref Std: WATER=1]

Water solubility Nil

Solubility- non-water No Data Available

Partition coefficient: n-octanol/ waterNo Data Available **Evaporation rate**No Data Available

Vapor Density No Data Available

Decomposition temperatureNo Data AvailableViscosityNo Data Available

Density 2 g/ml

9.2. Other information

Molecular weight No Data Available

SECTION 10: Stability and reactivity

10.1. Reactivity

This material is considered to be non reactive under normal use conditions.

10.2. Chemical stability

Stable.

10.3. Possibility of hazardous reactions

Hazardous polymerization will not occur.

10.4. Conditions to avoid

None known.

10.5. Incompatible materials

None known.

10.6. Hazardous decomposition products

<u>Substance</u>

None known.

Condition

Refer to section 5.2 for hazardous decomposition products during combustion.

Under recommended usage conditions, hazardous decomposition products are not expected. Hazardous decomposition products may occur as a result of oxidation, heating, or reaction with another material.

SECTION 11: Toxicological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 11 are based on UN GHS calculation rules and classifications derived from 3M assessments.

11.1. Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation:

No health effects are expected.

Skin Contact:

No health effects are expected.

Eye Contact:

No health effects are expected.

Ingestion:

No health effects are expected.

Additional Information:

This product, when used under reasonable conditions and in accordance with the 3M directions for use, should not present a health hazard. However, use or processing of the product in a manner not in accordance with the product's directions for use may affect the performance of the product and may present potential health and safety hazards.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Ingestion		No data available; calculated ATE > 5,000 mg/kg
Calcium Carbonate	Dermal	Rat	LD50 > 2,000 mg/kg

Calcium Carbonate	Inhalation-	Rat	LC50 3 mg/l
	Dust/Mist		
	(4 hours)		
Calcium Carbonate	Ingestion	Rat	LD50 6,450 mg/kg
Polybutylene	Dermal	Rat	LD50 > 10,250 mg/kg
Polybutylene	Ingestion	Rat	LD50 > 34,600 mg/kg
Talc	Dermal		LD50 estimated to be > 5,000 mg/kg
Talc	Ingestion		LD50 estimated to be > 5,000 mg/kg
Silica	Dermal	Rabbit	LD50 > 5,000 mg/kg
Silica	Inhalation- Dust/Mist	Rat	LC50 > 0.691 mg/l
	(4 hours)		
Silica	Ingestion	Rat	LD50 > 5,110 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
Calcium Carbonate	Rabbit	No significant irritation
Polybutylene	Rabbit	Minimal irritation
Silica	Rabbit	No significant irritation
Talc	Rabbit	No significant irritation

Serious Eye Damage/Irritation

Name	Species	Value
Calcium Carbonate	Rabbit	No significant irritation
Polybutylene	Rabbit	Mild irritant
Silica	Rabbit	No significant irritation
Talc	Rabbit	No significant irritation

Skin Sensitization

Skin Schsttzation		
Name	Species	Value
Silica	Human	Not sensitizing
	and	
	animal	

Respiratory Sensitization

Respiratory Schsitization			
Name	Species	Value	
Talc	Human	Not sensitizing	

Germ Cell Mutagenicity

Name	Route	Value

Silica	In Vitro	Not mutagenic
Talc	In Vitro	Not mutagenic
Talc	In vivo	Not mutagenic

Carcinogenicity

Name	Route	Species	Value
Silica	Not	Mouse	Some positive data exist, but the data are not
	Specified		sufficient for classification
Talc	Inhalation	Rat	Some positive data exist, but the data are not
			sufficient for classification

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test Result	Exposure Duration
Calcium Carbonate	Ingestion	Not toxic to development	Rat	NOAEL 625 mg/kg/day	premating & during gestation
Silica	Ingestion	Not toxic to female reproduction	Rat	NOAEL 509 mg/kg/day	1 generation
Silica	Ingestion	Not toxic to male reproduction	Rat	NOAEL 497 mg/kg/day	1 generation
Silica	Ingestion	Not toxic to development	Rat	NOAEL 1,350 mg/kg/day	during organogenesis
Talc	Ingestion	Not toxic to development	Rat	NOAEL 1,600 mg/kg	during organogenesis

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Specific Target Organ	TOXICITY - S	mgic exposure				
Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
Calcium Carbonate	Inhalation	respiratory system	All data are negative	Rat	NOAEL 0.812 mg/l	90 minutes

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
Calcium Carbonate	Inhalation	respiratory system	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	occupational exposure
Polybutylene	Inhalation	respiratory system	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 0.07 mg/l	2 weeks
Polybutylene	Inhalation	liver	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 0.7 mg/l	2 weeks

Silica	Inhalation	respiratory system	All data are negative	Human	NOAEL Not	occupational
		silicosis			available	exposure
Talc	Inhalation	pneumoconiosis	Causes damage to organs through prolonged or repeated exposure	Human	NOAEL Not available	occupational exposure
Talc	Inhalation	pulmonary fibrosis respiratory system	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 18 mg/m3	113 weeks

Aspiration Hazard

For the component/components, either no data are currently available or the data are not sufficient for classification.

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 12 are based on UN GHS calculation rules and classifications derived from 3M assessments.

12.1. Toxicity

No product test data available No component test data available

12.2. Persistence and degradability

No test data available

12.3. Bioaccumulative potential

No test data available

12.4. Mobility in soil

Please contact manufacturer for more details

12.5. Results of the PBT and vPvB assessment

No information available at this time, contact manufacturer for more details

12.6. Other adverse effects

No information available

SECTION 13: Disposal considerations

13.1 Waste treatment methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Prior to disposal, consult all applicable authorities and regulations to insure proper classification. Dispose of waste product in a permitted industrial waste facility. If no other disposal options are available, waste product may be placed in a landfill properly designed for industrial waste. Empty and clean product containers may be disposed as non-hazardous waste. Consult your specific regulations and service providers to determine available options and requirements.

The coding of a waste stream is based on the application of the product by the consumer. Since this is out of the control of the manufacturer, no waste code(s) for products after use will be provided. Please refer to the European Waste Code (EWC - 2000/532/CE and amendments) to assign the correct waste code to your waste stream. Ensure national and/or regional regulations are complied with and always use a licensed waste contractor

EU waste code (product as sold)

120199 Wastes not otherwise specified

SECTION 14: Transportation information

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Carcinogenicity

IngredientC.A.S. No.ClassificationRegulationSilica7631-86-9Gr. 3: Not classifiableInternational Agency
for Research on Cancer

Global inventory status

Contact manufacturer for more information The components of this product are in compliance with the chemical notification requirements of TSCA.

15.2. Chemical Safety Assessment

Not applicable

SECTION 16: Other information

Revision information:

- Section 02.1: Classification information information was deleted.
- Section 02: Label Elements: CLP Classification information was modified.
- Section 02: Label Elements: CLP Precautionary General information was deleted.
- Section 03: Composition/Information of ingredients table information was modified.
- Section 03: Reference to H statement explanation in Section 016 information was added.
- Section 03: Reference to R and H statement explanation in Section 016 information was deleted.
- Section 03: Reference to Section 015 for Nota info information was deleted.
- Section 04: First aid for eye contact information information was modified.
- Section 04: First aid for inhalation information information was modified.
- Section 04: First aid for skin contact information information was modified.
- Section 05: Fire Extinguishing media information information was modified.
- Section 06: Accidental release clean-up information information was modified.
- Section 06: Accidental release environmental information information was modified.
- Section 06: Accidental release personal information information was modified.
- Section 07: Conditions safe storage information was modified.
- Section 07: Precautions safe handling information information was modified.
- Section 08: Eye/face protection information information was deleted.
- Section 08: glove data value information was deleted.
- Section 08: Occupational exposure limit table information was modified.
- Section 08: Personal Protection Eye information information was modified.
- Section 08: Personal Protection Skin/hand information information was modified.
- Section 08: Skin protection recommended gloves text information was deleted.
- Section 09: Property description for optional properties information was added.
- Section 09: Property description for optional properties information was deleted.
- Section 11: Acute Toxicity table information was modified.
- Section 11: Carcinogenicity Table information was modified.
- Section 11: Germ Cell Mutagenicity Table information was modified.
- Section 11: Health Effects Eye information information was modified.
- Section 11: Health Effects Ingestion information information was modified.
- Section 11: Health Effects Inhalation information information was modified.
- Section 11: Health Effects Skin information information was modified.
- Section 11: Reproductive Toxicity Table information was modified.
- Section 11: Respiratory Sensitization Table information was modified.
- Section 11: Serious Eye Damage/Irritation Table information was modified.
- Section 11: Skin Corrosion/Irritation Table information was modified.
- Section 11: Skin Sensitization Table information was modified.
- Section 11: Target Organs Repeated Table information was modified.
- Section 11: Target Organs Single Table information was modified.
- Section 12: Component ecotoxicity information information was deleted.
- Section 12: No Data text for bioccumulative potential information was added.
- Section 12: No Data text for component ecotoxicity information was added.
- Section 12: No Data text for persistence and degradability information was added.
- Section 12: Persistence and Degradability information information was deleted.
- Section 12:Bioccumulative potential information information was deleted.
- Section 15: Carcinogenicity information information was modified.

C2100, Mirror Glaze Professional Detailing Clay (Aggressive)
DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.
Meguiar's, Inc. Greece SDSs are available at GR_GCSL - Local Meguiar's Website

Page: 14 of 14