

Safety Data Sheet

Copyright, 2017, Meguiar's, Inc. All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing Meguiar's, Inc. products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from Meguiar's, Inc., and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document Group:
 31-5448-1
 Version Number:
 1.02

 Revision Date:
 20/06/2017
 Supercedes Date:
 06/12/2016

This Safety Data Sheet has been prepared in accordance with the REACH Regulation (1907/2006) and its modifications

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

D101, Detailer All Purpose Cleaner (22-135B): D10101, D10105

Product Identification Numbers

14-1000-0168-5 14-1000-0169-3 14-1000-0170-1 GC-8010-6283-4

1.2. Relevant identified uses of the substance or mixture and uses advised against

Identified uses

Automotive

1.3. Details of the supplier of the safety data sheet

ADDRESS: GR_GCSL - Local CUNO Address
Telephone: GR_GCSL - Local Meguiar's Telephone
E Mail: GR_GCSL - Local Meguiar's Email
Website: GR_GCSL - Local Meguiar's Website

1.4. Emergency telephone number

GR_GCSL - Local Meguiar's Emergency Telephone

SECTION 2: Hazard identification

2.1. Classification of the substance or mixture CLP REGULATION (EC) No 1272/2008

CLASSIFICATION:

Substance or Mixture Corrosive to Metals, Category 1 - Met. Corr. 1; H290 Serious Eye Damage/Eye Irritation, Category 1 - Eye Dam. 1; H318 Skin Corrosion/Irritation, Category 1 - Skin Corr. 1; H314

For full text of H phrases, see Section 16.

2.2. Label elements

CLP REGULATION (EC) No 1272/2008

SIGNAL WORD

Danger

Symbols:

GHS05 (Corrosion) |

Pictograms

Ingredients:

Ingredient C.A.S. No. EC No. % by Wt

Sodium Metasilicate 6834-92-0 229-912-9 < 5

HAZARD STATEMENTS:

H290 May be corrosive to metals.

H314 Causes severe skin burns and eye damage.

PRECAUTIONARY STATEMENTS

General:

P102 Keep out of reach of children.

Prevention:

P234 Keep only in original container.
P260E Do not breathe vapor or spray.

Response:

P303 + P361 + P353 IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with

water/shower.

D101, Detailer All Purpos	se Cleaner (22-135B): D10101, D10105
P310	Immediately call a POISON CENTER or doctor/physician.
Disposal:	
P501	Dispose of contents/container in accordance with applicable local/regional/national/international regulations.
Ingredients required per cinnamal, butylphenyl m	(EC) No. 648/2004 on detergents. 648/2004 (not required on industrial label): <5%: Anionic surfactant. Contains: Perfumes, hexyl ethylpropional, linalool. d on pH and testing on a similar product.

2.3. Other hazards

May cause chemical gastrointestinal burns.

SECTION 3: Composition/information on ingredients

Ingredient	C.A.S. No.	EC No.	REACH	% by Wt	Classification
			Registration		
			No.		
Non-Hazardous Ingredients	Mixture			75 - 95	Substance not classified as
					hazardous
Sodium Metasilicate	6834-92-0	229-912-9		< 5	**Skin Corr. 1B**, H314;
					STOT SE 3, H335
					Met. Corr. 1, H290
2-Butoxyethanol	111-76-2	203-905-0	01-	1 - 5	**Acute Tox. 4**, H332;
			2119475108-		**Acute Tox. 4**, H312;
			36		**Acute Tox. 4**, H302;
					Skin Irrit. 2, H315;
					Eye Irrit. 2, H319
SULFONIC ACIDS, C14-16-	68439-57-6	270-407-8		< 3	**Acute Tox. 4**, H302;
ALKANE HYDROXY AND C14-					**Eye Dam. 1**, H318;
16ALKENE, SODIUM SALTS					**Aquatic Chronic 3**,
					H412

Please see section 16 for the full text of any H statements referred to in this section

For information on ingredient occupational exposure limits or PBT or vPvB status, see sections 8 and 12 of this SDS

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation

Remove person to fresh air. Get immediate medical attention.

Skin Contact:

Immediately flush with large amounts of water for at least 15 minutes. Remove contaminated clothing. Get immediate medical attention. Wash clothing before reuse.

Eye Contact:

Immediately flush with large amounts of water for at least 15 minutes. Remove contact lenses if easy to do. Continue rinsing. Immediately get medical attention.

If Swallowed:

Rinse mouth. Do not induce vomiting. Get immediate medical attention.

4.2. Most important symptoms and effects, both acute and delayed

See Section 11.1. Information on toxicological effects.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

None inherent in this product.

Hazardous Decomposition or By-Products

Substance
Carbon monoxide
Carbon dioxide
Irritant Vapors or Gases

Condition

During Combustion During Combustion During Combustion

5.3. Advice for fire-fighters

No special protective actions for fire-fighters are anticipated.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment. For larger spills, cover drains and build dikes to prevent entry into sewer systems or bodies of water.

6.3. Methods and material for containment and cleaning up

Contain spill. For large spills, if necessary, get assistance from professional spill clean up team. For small spills, carefully neutralize spill by adding appropriate dilute acid such as vinegar. Work slowly to avoid boiling or spattering. Continue to add neutralizing agent until reaction stops. Let cool before collecting. Or use a commercially available caustic (alkaline or basic) spill clean-up kit. Follow kit directions exactly. Working from around the edges of the spill inward, cover with bentonite, vermiculite, or commercially available inorganic absorbent material. Mix in sufficient absorbent until it appears dry. Remember, adding an absorbent material does not remove a physical, health, or environmental hazard. Collect as much of the spilled material as possible. Place in a metal container approved for use in transportation by appropriate authorities. The container must be lined with polyethylene plastic or contain a plastic drum liner made of polyethylene. Clean up residue with water. Cover, but do not seal for 48 hours. Dispose of collected material as soon as possible.

6.4. Reference to other sections

Refer to Section 8 and Section 13 for more information

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Keep out of reach of children. Do not breathe dust/fume/gas/mist/vapors/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Avoid release to the environment. Wash contaminated clothing before reuse. Avoid contact with oxidizing agents (eg. chlorine, chromic acid etc.) Keep away

from reactive metals (eg. Aluminum, zinc etc.) to avoid the formation of hydrogen gas that could create an explosion hazard.

7.2. Conditions for safe storage including any incompatibilities

Store in a well-ventilated place. Keep container tightly closed. Store in a corrosive resistant container with a resistant inner liner. Store away from acids. Store away from oxidizing agents. Store away from areas where product may come into contact with food or pharmaceuticals.

7.3. Specific end use(s)

See information in Section 7.1 and 7.2 for handling and storage recommendations. See Section 8 for exposure controls and personal protection recommendations.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient C.A.S. No. Agency Limit type Additional Comments
2-Butoxyethanol 111-76-2 Greece OELs TWA(8 hours):120 mg/m3(25 SKIN ppm)

Greece OELs: Greece. OELs (Decree No. 90/1999, as amended)

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling

8.2. Exposure controls

8.2.1. Engineering controls

Use in a well-ventilated area. Use general dilution ventilation and/or local exhaust ventilation to control airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapors/spray. If ventilation is not adequate, use respiratory protection equipment.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Full Face Shield

D101 Detailer All Purnose Cle	aner (22-135B): D10101, D10105
Dioi, Detailer An I di pose Cie	anci (22-133D). Divivi, Diviv

Indirect Vented Goggles

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing. Note: Nitrile gloves may be worn over polymer laminate gloves to improve dexterity. Gloves made from the following material(s) are recommended:

MaterialThickness (mm)Breakthrough TimePolymer laminateNo data availableNo data available

If this product is used in a manner that presents a higher potential for exposure (eg. spraying, high splash potential etc.), then use of protective coveralls may be necessary. Select and use body protection to prevent contact based on the results of an exposure assessment. The following protective clothing material(s) are recommended: Apron - polymer laminate

Respiratory protection

An exposure assessment may be needed to decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program. Based on the results of the exposure assessment, select from the following respirator type(s) to reduce inhalation exposure:

Half facepiece or full facepiece air-purifying respirator suitable for organic vapors and particulates

For questions about suitability for a specific application, consult with your respirator manufacturer.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state Liquid

Appearance/OdorSweet odor; Green liquidOdor thresholdNo Data Available

pH 13 Boiling point/boiling range 100 °C

Melting pointNot ApplicableFlammability (solid, gas)Not ApplicableExplosive properties:Not ClassifiedOxidising properties:Not Classified

Flash Point Flash point > 93 °C (200 °F) [Test Method: Closed Cup]

Autoignition temperatureNot ApplicableFlammable Limits(LEL)Not ApplicableFlammable Limits(UEL)Not ApplicableVapor PressureNo Data AvailableRelative Density1 [Ref Std:WATER=1]

Water solubility Complete

Solubility- non-water No Data Available

Partition coefficient: n-octanol/ waterNo Data AvailableEvaporation rateNo Data AvailableVapor DensityNo Data Available

Decomposition temperatureNo Data Available**Viscosity**No Data Available

Density 1 g/cm3

9.2. Other information

Molecular weight No Data Available

SECTION 10: Stability and reactivity

10.1. Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section.

10.2. Chemical stability

Stable.

10.3. Possibility of hazardous reactions

Hazardous polymerization will not occur.

10.4. Conditions to avoid

None known.

10.5. Incompatible materials

Strong acids
Strong oxidizing agents

10.6. Hazardous decomposition products **Substance**

Condition

None known.

Refer to section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 11 are based on UN GHS calculation rules and classifications derived from 3M assessments.

11.1. Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation:

Respiratory Tract Corrosion: Signs/symptoms may include nasal discharge, severe nose and throat pain, chest tightness and pain, coughing up blood, wheezing, and breathlessness, possibly progressing to respiratory failure.

May cause additional health effects (see below).

Skin Contact:

Corrosive (Skin Burns): Signs/symptoms may include localized redness, swelling, itching, intense pain, blistering, ulceration, and tissue destruction.

Eye Contact:

Corrosive (Eye Burns): Signs/symptoms may include cloudy appearance of the cornea, chemical burns, severe pain, tearing, ulcerations, significantly impaired vision or complete loss of vision.

Ingestion:

Gastrointestinal Corrosion: Signs/symptoms may include severe mouth, throat and abdominal pain; nausea; vomiting; and diarrhea; blood in the feces and/or vomitus may also be seen.

May cause additional health effects (see below).

Additional Health Effects:

Single exposure may cause target organ effects:

Blood Effects: Signs/symptoms may include generalized weakness and fatigue, skin pallor, changes in blood clotting time, internal bleeding, and/or hemoglobinemia.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Dermal		No data available; calculated ATE >5,000 mg/kg
Overall product	Inhalation- Vapor(4 hr)		No data available; calculated ATE >50 mg/l
Overall product	Ingestion		No data available; calculated ATE >5,000 mg/kg
Sodium Metasilicate	Dermal	Rabbit	LD50 > 4,640 mg/kg
Sodium Metasilicate	Ingestion	Rat	LD50 500 mg/kg
SULFONIC ACIDS, C14-16-ALKANE HYDROXY AND C14- 16ALKENE, SODIUM SALTS	Dermal	Rat	LD50 > 2,000 mg/kg
SULFONIC ACIDS, C14-16-ALKANE HYDROXY AND C14- 16ALKENE, SODIUM SALTS	Ingestion	Rat	LD50 578 mg/kg
2-Butoxyethanol	Dermal	Guinea pig	LD50 > 2,000 mg/kg
2-Butoxyethanol	Inhalation- Vapor (4 hours)	Guinea pig	LC50 > 2.6 mg/l
2-Butoxyethanol	Ingestion	Guinea pig	LD50 1,414 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

5km Corrosion/irritation					
Name	Species	Value			
Overall product	In vitro data	Corrosive			
Sodium Metasilicate	Rabbit	Corrosive			

SULFONIC ACIDS, C14-16-ALKANE HYDROXY AND C14-16ALKENE,	Rabbit	Mild irritant
SODIUM SALTS		
2-Butoxyethanol	Rabbit	Irritant

Serious Eye Damage/Irritation

Scribus Eye Damage/Hittation						
Name	Species	Value				
Overall product	similar	Corrosive				
	health					
	hazards					
Sodium Metasilicate	Rabbit	Corrosive				
SULFONIC ACIDS, C14-16-ALKANE HYDROXY AND C14-16ALKENE,	Rabbit	Corrosive				
SODIUM SALTS						
2-Butoxyethanol	Rabbit	Severe irritant				

Skin Sensitization

Name		Value
Sodium Metasilicate	Mouse	Not classified
SULFONIC ACIDS, C14-16-ALKANE HYDROXY AND C14-16ALKENE, SODIUM SALTS	Guinea pig	Not classified
2-Butoxyethanol	Guinea pig	Not classified

Respiratory Sensitization

For the component/components, either no data are currently available or the data are not sufficient for classification.

Germ Cell Mutagenicity

Name		Value		
Sodium Metasilicate	In Vitro	Not mutagenic		
Sodium Metasilicate	In vivo	Not mutagenic		
SULFONIC ACIDS, C14-16-ALKANE HYDROXY AND C14-16ALKENE, SODIUM SALTS	In Vitro	Not mutagenic		
2-Butoxyethanol	In Vitro	Some positive data exist, but the data are not sufficient for classification		

Carcinogenicity

Name	Route	Species	Value
SULFONIC ACIDS, C14-16-ALKANE HYDROXY AND C14- 16ALKENE, SODIUM SALTS	Dermal	Rat	Not carcinogenic
SULFONIC ACIDS, C14-16-ALKANE HYDROXY AND C14- 16ALKENE, SODIUM SALTS		Rat	Not carcinogenic
2-Butoxyethanol	Inhalation	Multiple animal species	Some positive data exist, but the data are not sufficient for classification

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test Result	Exposure Duration
Sodium Metasilicate	Ingestion	Not classified for development	Mouse	NOAEL 200 mg/kg/day	during gestation
SULFONIC ACIDS, C14-16-ALKANE HYDROXY AND C14-16ALKENE, SODIUM SALTS	Ingestion	Not classified for female reproduction	Rat	NOAEL 871 mg/kg	2 generation
SULFONIC ACIDS, C14-16-ALKANE HYDROXY AND C14-16ALKENE, SODIUM SALTS	Ingestion	Not classified for male reproduction	Rat	NOAEL 891 mg/kg	2 generation
SULFONIC ACIDS, C14-16-ALKANE HYDROXY AND C14-16ALKENE, SODIUM SALTS	Ingestion	Not classified for development	Rabbit	NOAEL 600 mg/kg	during organogenesis
2-Butoxyethanol	Dermal	Not classified for development	Rat	NOAEL 1,760 mg/kg/day	during gestation
2-Butoxyethanol	Ingestion	Not classified for development	Rat	NOAEL 100 mg/kg/day	during organogenesis
2-Butoxyethanol	Inhalation	Not classified for development	Multiple animal species	NOAEL 0.48 mg/l	during organogenesis

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
Overall product	Inhalation	respiratory irritation	May cause respiratory irritation	similar health hazards	Irritation Positive	
Sodium Metasilicate	Inhalation	respiratory irritation	May cause respiratory irritation	official classifica tion	NOAEL Not available	
2-Butoxyethanol	Dermal	endocrine system	Not classified	Rabbit	NOAEL 902 mg/kg	6 hours
2-Butoxyethanol	Dermal	liver	Not classified	Rabbit	LOAEL 72 mg/kg	not available
2-Butoxyethanol	Dermal	kidney and/or bladder	Not classified	Rabbit	LOAEL 451 mg/kg	6 hours
2-Butoxyethanol	Dermal	blood	Not classified	Multiple animal species	NOAEL Not available	
2-Butoxyethanol	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	
2-Butoxyethanol	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	
2-Butoxyethanol	Inhalation	blood	Not classified	Multiple animal species	NOAEL Not available	
2-Butoxyethanol	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Professio nal judgeme nt	NOAEL Not available	

2-Butoxyethanol	Ingestion	blood	Not classified	Multiple	NOAEL Not	
				animal	available	
				species		
2-Butoxyethanol	Ingestion	kidney and/or	Not classified	Human	NOAEL Not	poisoning
		bladder			available	and/or abuse

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
Sodium Metasilicate	Ingestion	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Dog	LOAEL 2,400 mg/kg/day	4 weeks
Sodium Metasilicate	Ingestion	endocrine system blood	Not classified	Rat	NOAEL 804 mg/kg/day	3 months
Sodium Metasilicate	Ingestion	heart liver	Not classified	Rat	NOAEL 1,259 mg/kg/day	8 weeks
SULFONIC ACIDS, C14- 16-ALKANE HYDROXY AND C14-16ALKENE, SODIUM SALTS	Ingestion	liver	Not classified	Rat	NOAEL 500 mg/kg/day	6 months
SULFONIC ACIDS, C14- 16-ALKANE HYDROXY AND C14-16ALKENE, SODIUM SALTS	Ingestion	kidney and/or bladder	Not classified	Rat	NOAEL 500 mg/kg	6 months
2-Butoxyethanol	Dermal	blood	Not classified	Multiple animal species	NOAEL Not available	not available
2-Butoxyethanol	Dermal	endocrine system	Not classified	Rabbit	NOAEL 150 mg/kg/day	90 days
2-Butoxyethanol	Inhalation	liver	Not classified	Rat	NOAEL 2.4 mg/l	14 weeks
2-Butoxyethanol	Inhalation	kidney and/or bladder	Not classified	Rat	NOAEL 0.15 mg/l	14 weeks
2-Butoxyethanol	Inhalation	blood	Not classified	Rat	LOAEL 0.15 mg/l	6 months
2-Butoxyethanol	Inhalation	endocrine system	Not classified	Dog	LOAEL 1.9 mg/l	8 days
2-Butoxyethanol	Ingestion	blood	Not classified	Rat	LOAEL 69 mg/kg/day	13 weeks
2-Butoxyethanol	Ingestion	kidney and/or bladder	Not classified	Multiple animal species	NOAEL Not available	not available

Aspiration Hazard

For the component/components, either no data are currently available or the data are not sufficient for classification.

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 12 are based on UN GHS calculation rules and classifications derived from 3M assessments.

12.1. Toxicity

No product test data available

Material	Cas #	Organism	Туре	Exposure	Test Endpoint	Test Result
2-	111-76-2	Crustacea	Experimental	96 hours	Effect	89.4 mg/l
Butoxyethanol					Concentration	
					50%	
2-	111-76-2	Rainbow Trout	Experimental	96 hours	Lethal	1,474 mg/l
Butoxyethanol					Concentration	
					50%	
2-	111-76-2	Water flea	Experimental	21 days	No obs Effect	100 mg/l
Butoxyethanol					Conc	
2-	111-76-2	Green Algae	Experimental	72 hours	No obs Effect	130 mg/l
Butoxyethanol					Conc	
2-	111-76-2	Water flea	Experimental	48 hours	Effect	1,550 mg/l
Butoxyethanol					Concentration	
					50%	
2-	111-76-2	Green Algae	Experimental	72 hours	Effect	>1,000 mg/l
Butoxyethanol					Concentration	
					50%	
SULFONIC	68439-57-6	Zebra Fish	Experimental	96 hours	Lethal	2.6 mg/l
ACIDS, C14-					Concentration	
16-ALKANE					50%	
HYDROXY						
AND C14-						
16ALKENE,						
SODIUM						
SALTS						
SULFONIC	68439-57-6	Water flea	Estimated	21 days	No obs Effect	0.37 mg/l
ACIDS, C14-					Conc	
16-ALKANE						
HYDROXY						
AND C14-						
16ALKENE,						
SODIUM						
SALTS	69420 57 6	337-4	Ei	40 1	Eff4	2.49 //
SULFONIC	68439-57-6	Water flea	Experimental	48 hours	Effect Concentration	3.48 mg/l
ACIDS, C14-						
16-ALKANE HYDROXY					50%	
AND C14-						
16ALKENE,						
SODIUM						
SALTS						
SALIS		1	1		1	

Sodium	6834-92-0	Water flea	Estimated	48 hours	Effect	1,700 mg/l
Metasilicate					Concentration	
					50%	
Sodium	6834-92-0	Rainbow Trout	Estimated	96 hours	Lethal	281 mg/l
Sodium Metasilicate	6834-92-0	Rainbow Trout	Estimated		Lethal Concentration	281 mg/l

12.2. Persistence and degradability

Material	CAS No.	Test Type	Duration	Study Type	Test Result	Protocol
SULFONIC	68439-57-6	Experimental	28 days	Carbon dioxide	70 % weight	OECD 301B - Mod.
ACIDS, C14-		Biodegradation		evolution		Sturm or CO2
16-ALKANE						
HYDROXY						
AND C14-						
16ALKENE,						
SODIUM						
SALTS						
2-	111-76-2	Experimental	14 days	Biological	96 % weight	OECD 301C - MITI (I)
Butoxyethanol		Biodegradation		Oxygen		
				Demand		
Sodium	6834-92-0	Data not	N/A	N/A	N/A	N/A
Metasilicate		available or				
		insufficient for				
		classification				

12.3. Bioaccumulative potential

Material	CAS No.	Test Type	Duration	Study Type	Test Result	Protocol
Sodium	6834-92-0	Data not	N/A	N/A	N/A	N/A
Metasilicate		available or				
		insufficient for				
		classification				
SULFONIC	68439-57-6	Estimated		Log of	0.7	Est: Octanol-water part.
ACIDS, C14-		Bioconcentrati		Octanol/H2O		coeff
16-ALKANE		on		part. coeff		
HYDROXY						
AND C14-						
16ALKENE,						
SODIUM						
SALTS						
2-	111-76-2	Experimental		Log of	0.83	Other methods
Butoxyethanol		Bioconcentrati		Octanol/H2O		
		on		part. coeff		

12.4. Mobility in soil

Please contact manufacturer for more details

12.5. Results of the PBT and vPvB assessment

No information available at this time, contact manufacturer for more details

12.6. Other adverse effects

No information available

The surfactant(s) contained in this preparation comply with the biodegradability criteria as laid down in Regulation (EC) No.648/2004 on detergents.

SECTION 13: Disposal considerations

13.1 Waste treatment methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Dispose of waste product in a permitted industrial waste facility. Empty drums/barrels/containers used for transporting and handling hazardous chemicals (chemical substances/mixtures/preparations classified as Hazardous as per applicable regulations) shall be considered, stored, treated & disposed of as hazardous wastes unless otherwise defined by applicable waste regulations. Consult with the respective regulating authorities to determine the available treatment and disposal facilities.

The coding of a waste stream is based on the application of the product by the consumer. Since this is out of the control of the manufacturer, no waste code(s) for products after use will be provided. Please refer to the European Waste Code (EWC - 2000/532/CE and amendments) to assign the correct waste code to your waste stream. Ensure national and/or regional regulations are complied with and always use a licensed waste contractor

EU waste code (product as sold)

200129* Detergents containing dangerous substances

SECTION 14: Transportation information

ADR: UN3266 Corrosive Liquid, Basic, Inorganic, N.O.S. (Contains Sodium Metasilicate); 8; III; (E); C5

IATA: UN3266 Corrosive Liquid, Basic, Inorganic, N.O.S. (Contains Sodium Metasilicate); 8; III

IMDG: UN3266 Corrosive Liquid, Basic, Inorganic, N.O.S. (Contains Sodium Metasilicate); 8; III; EmS: F-A, S-B

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Carcinogenicity

Ingredient C.A.S. No. Classification Regulation

2-Butoxyethanol 111-76-2 Gr. 3: Not classifiable International Agency for Research on Cancer

Global inventory status

Contact manufacturer for more information The components of this material are in compliance with the provisions of

Australia National Industrial Chemical Notification and Assessment Scheme (NICNAS). Certain restrictions may apply. Contact the selling division for additional information. The components of this material are in compliance with the provisions of Philippines RA 6969 requirements. Certain restrictions may apply. Contact the selling division for additional information. The components of this product are in compliance with the new substance notification requirements of CEPA. The components of this product are in compliance with the chemical notification requirements of TSCA. This product complies with Measures on Environmental Management of New Chemical Substances. All ingredients are listed on or exempt from on China IECSC inventory.

15.2. Chemical Safety Assessment

Not applicable

SECTION 16: Other information

List of relevant H statements

H290	May be corrosive to metals.
H302	Harmful if swallowed.
H312	Harmful in contact with skin.
H314	Causes severe skin burns and eye damage.
H315	Causes skin irritation.
H318	Causes serious eye damage.
H319	Causes serious eye irritation.
H332	Harmful if inhaled.
H335	May cause respiratory irritation.
H412	Harmful to aquatic life with long lasting effects.

Revision information:

Section 02: CLP Ingredient table information was modified.

Section 03: Composition/Information of ingredients table information was added.

Section 03: Composition/Information of ingredients table information was deleted.

Section 06: Accidental release personal information information was modified.

Section 09: Flash point information information was modified.

Section 09: Relative density information information was modified.

Section 11: Acute Toxicity table information was modified.

Section 11: Reproductive Toxicity Table information was modified.

Section 11: Skin Sensitization Table information was modified.

Section 11: Target Organs - Repeated Table information was modified.

Section 11: Target Organs - Single Table information was modified.

Section 12: Component ecotoxicity information information was modified.

Section 12: Persistence and Degradability information information was modified.

Section 12:Bioccumulative potential information information was modified.

D101, Detailer All Purpose Cleaner (22-135B): D10101, D10105
DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.
Meguiar's, Inc. Greece SDSs are available at GR_GCSL - Local Meguiar's Website